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XIX. The Coefficient of Viscosity of Air.
By HErBERT ToMLINSON, B.4.

Communicated, with the addition of two Notes, by Professor G. G. Stokes, P.R.S.
Received January 6,—Read Janunary 14th, 1886.
[Prare 42.]

Origin and Purpose of the Investigation.

THREE years ago I entered on a series of researches relating to the internal friction of
metals, little calculating, when I did so, that the task which I had set myselt would
occupy almost the whole of my spare time from that date to this. So, however, it
has been, and one of the many causes of delay has been the necessity of making a
re-determination of the coefficient of viscosity of air; for the resistance of the air
played far too important a part in my investigations to permit of its being either
neglected or even roughly estimated. The coeflicient of viscosity of air may,
according to MAXWELL, be best defined by considering a stratum of air between two
parallel horizontal plaues of indefinite extent, at a distance r from one another.
Suppose the upper plane to be set in motion in a horizontal direction with a velocity
of v centimetres per second, and to continue in motion till the air in the different
parts of the stratum has taken up its final velocity, then the velocity of the air will
increase uniformly as we pass from the lower plane to the upper. If the air in
contact with the planes has the same velocity as the planes themselves, then the

. . . v . .
velocity will increase . centimetres per second for every centimetre we ascend. The

friction between any two contiguous strata of air will then be equal to that between
either surface and the air in contact with it. Suppose that this friction is equal to a
tangential force f on every square centimetre, then

v
S=nry
where p is the coefficient of friction. If L, M, T represent the units of length, mass,
and time, the dimensions of w are L*MT~.
Several investigators have attempted to determine the coefficient of viscosity of air,

and the following table shows how very widely the results obtained differ among
each other :— '
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768 MR. H. TOMLINSON ON THE COEFFICIENT OF VISCOSITY OF AIR,

TasLe I.
Coeficient of viscosity of Temperature in
Author.* air in C.G.8. units).r degreeg Centigrade.
G. G. Sroxes, from Bainy’s pendulum 000104
experiments. '

MgzYER, from BESSEL’S experiments . 000275
MEYER, from GIRAULT'S experiments . 000384
MEYER . . . . . . . . ... 000360 18
MEeYER (second paper)t. . . . . . ‘000333 83

ys . e ‘000323 215

’ ’ Lo ‘000366 344
MAXWELL 000200 18

Further, MAXwELL finds the coefficient of viscosity of air to be independent of the
pressure and to vary directly as the absolute temperature.] The above author gives
the following formula for finding u, the coefficient of viscosity, at any temperature

0° C..—
e ="0001878(14008656).

MaxwELL offers an explanation of the difference existing between his own results
and those of MEYER, but states that ‘ he has not found any means of explaining the
difference between his own results and those of Professor STokEs.” Professor STOKES
has, however, been good enough to inform me that, as at the time of making his deduc-
tions from BAILY’S experiments it was not known that the coefficient of viscosity of
air was independent of the pressure, but, on the contrary, was assumed by him to vary
directly as the pressure, the resistance offered by the residual air in BA1Ly’s partial
vacua was underestimated, and, as a consequence, the deduced coefficient of viscosity
was too small. Itis to be hoped that Professor Stoxes will at some future period apply
the necessary corrections, but as this has not yet been done, and as we have still no
explanation of the discrepancies existing between the other values of u given in
Table I., T wished to make some independent observations on the viscosity of air for
the purpose of ascertaining how far these would agree with those of MAXWELL, in
which I was inclined to place great confidence.

MaxweLL employed the method of torsional vibrations of disks placed each
between two parallel fixed disks at a small, but easily measurable distance, in which
case, when the period of vibration is long, the mathematical difficulties of determining
the motion of the air are greatly diminished. This method appeared to be a very good
one, but, as T wished to make my determinations under conditions similar to those

* Tor references see MAXWELL’S Bakerian Lecture, ¢ Phil. Trans.,” vol. 156, 1866, p. 249.
+ Mgrysr has more recently made other determinations of the coefficient, for which see the end of the

paper..
1 This result does not seem to be confirmed by other experimenters. (See the end of the paper.)
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which held in my experiments on the internal friction of metals, I have employed the
torsional vibrations of cylinders or spheres attached to a horizontal cylindrical bar
and moving in a sufficiently unconfined space. The mathematical difficulties con-
nected with the use of vibrating spheres are not so serious, but those in which cylinders
are concerned are very considerable. They both, however, have been surmounted by
Professor G. G. STOKES in his valuable paper “ On the Effect of the Internal Friction of
Fluids on the Motion of Pendulums,”* and to this paper I am indebted for the
mathematics essential to the purpose of the present inquiry.

Description of Apparatus and Mode of Experimenting.

A wire, a b (Plate 42, fig. 1), was suspended in the axis of an air-chamber, W, made of
two concentric copper cylinders enclosing between them a layer of water. The outer
diameter of the air-chamber was 4 inches, the inner diameter 2 inches, and the length
4% feet. Resting on the top of the air-chamber and wedged into it was a stout
T-shaped piece of brass, C, to the lower extremity of which was clamped one end of
the wire. The lower extremity of the wire was soldered or clamped at b to a vertical
cylindrical copper bar b Q, which was in turn clamped at Q to the centre of a
horizontal bar V'V. The bar V'V consisted of a piece of thin, hollow, drawn brass
tubing, of which the length was 30'70 centims. and the diameter 1'420 centim. This
bar was graduated into millimetres and carried two suspenders,.S, S, which were
clamped to it at equal distances from the centre (fig. 8). The suspenders were each
provided with an index such that their positions on the bar V'V could be readily
estimated to one-tenth of a millimetre. The mean diameter of the cylindrical portion,
S K, of each suspender was 0°3366 centim., and the length of this portion 8:50 centims.
To the ends, K, of the suspenders could be screwed (fig. 3) hollow cylinders of stiff
paper or metal, or spheres of wood ; when the former were employed the suspenders
were provided with disks, m, m, of the same diameter as the cylinders, and about
2 millims. in thickness. Two brass caps, D, D (fig. 4), provided with screws about
8 centims. in length and 2 millims. in diameter, fit one into each end of the hollow
bar V'V, and can be easily removed from or placed in the latter.

To begin with, two cylinders or two spheres were screwed on to the ends of the
suspenders (in the former case right up to the disks m, m), and the logarithmic
decrement and the time of vibration determined from a very large number of
vibrations. The cylinders or spheres were now unscrewed, and, the brass caps, D, D,
having been temporarily removed for the purpose, two brass cylinders, 4, & (fig. 4),
each of the same mass as either of the vertical cylinders or spheres which had just
been removed, were, by means of companion-screws, cut along their axes, adjusted on
to the screws attached to the caps D, D, and at such a distance from the latter as
preliminary experiments had proved would give nearly the same vibration-period,
when the caps should be replaced in the bar V V, as had existed before the vertical

* ¢ Camb. Phil. Soc. Trans.,” vol. 9, No. X. (1850).
MDCCCLXXXVI, 5F
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cylinders or spheres had been removed. The caps D, D, were now replaced in V'V,
and the logarithmic decrement, together with the time of vibration, was once more
carefully determined. Observations such as these, when certain corrections presently
to be mentioned had been applied, enabled one to calculate the effect of the resistance
of the air on the vibrating vertical cylinders or spheres as far as the diminution of the
amplitude of vibration was concerned.

The bar V'V with its appendages was protected by a wooden box B of sufficient
size to permit of vibrations, which, as regards the resistance of the air, were practically
~as free as in the open.* This box was provided with a window, E E, and two side-
doors, lined with caoutchouc so as to fit air-tight ; these side-doors were kept shut,
except when it was necessary to make fresh adjustments. The torsional vibrations of
the wire were observed by means of the usual mirror-and-scale arrangement, which is
sufficiently shown in fig. 1, where M is the light mirror reflecting an illuminated circle
of light crossed by a vertical, fine, dark line on to a scale bent into an arc of a circle
of 1 metre radius, and placed at a distance of 1 metre from the mirror.

My three years’ experience of the internal friction of metals had taught me that
this last is by no means constant unless the greatest care be taken to prevent slight
fluctuations of temperature. The above-mentioned fact seems to have escaped the.
notice of MAXWELL and MEYER, probably on account of the internal friction of the
metal having a considerably less damping effect than the resistance of the air in their
experiments. With me, however, especially in some cases, changes in the internal
friction of the metal would have rendered it very difficult, nay, impossible, to attain
the accuracy which I aimed at, and I deemed it advisable to protect the wire still
further, as follows :—The top of the air-chamber W was well covered with baize, and
surrounding W, and concentric with it, was a larger air-chamber X, made of tinned
iron. This air-chamber was 114 inches in inner diameter, 15 inches in outer diameter,
and 46 inches in height; the two concentric chambers of which it was composed
enclosed between them a space 2 inches thick, stuffed with sawdust, whilst on the top
of the chamber was placed a double cover A, also packed with sawdust. Passing
through the outer air-chamber X, and through the walls of W, were two metal tubes
in which were placed two thermometers T;, T,, with their bulbs near the wire; these
thermometers were made by indiarubber tubing to slide air-tight in the metal tubes.
A section of the two chambers X and W passing through oue of the thermometers is
shown in plan in fig. 2. The whole of this part of the apparatus rested on a stout
wooden table, in which was pierced an aperture of a size just sufficient to allow the
zinc tube Z, soldered to the air-chamber W, to pass through it and into the box
beneath. A third thermometer T; served to give the temperature of the air in the

* In fig. 1 the cylinders appear to be closer to the sides of the box than they were in reality; the bar
V'V faced the window, but, for the sake of showing the arrangement of the cylinders better, it has been
drawn facing the adjacent side of the box. The centres of the cylinders were at least six inches from

the sides of the box.
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box B, whilst the mean of the readings of T, and T, was used for the temperature of
the wire. The thermometer T; was divided to one-tenth of a degree Centigrade, and
had been tested at Kew ; whilst the thermometers T, and T,, which were graduated
in degrees Centigrade, had been carefully compared by myself, degree by degree,
with Tj. '

The barometric pressure was registered by means of a delicate aneroid barometer,
reading to t¢pth of an inch, which has been in my possession for 15 years; this
instrument I had recently compared with a standard mercury barometer.*

Before commencing the actual experiments on the viscosity of the air, it was found
advisable to subject the wire to a preliminary training, in order not merely to
diminish the internal friction of it, but also to make this last as constant as possible.
In the first place, the wire was well annealed ; this had the effect of reducing the
internal friction of the hard-drawn metal to less than one-half of its previous
amount.t In the next place, a load, equal to that of the cylinders or spheres to be
used, having been suspended to VV, the wire was alternately heated to 100° C. and
cooled again, this process being repeated for about a week, on each day of the week,
until there was no further alteration of the internal friction of the wire when cool.
This treatment still further reduced very considerably the damping of the vibrations
due to the wire. The manner in which the heating was effected will be shown in a
future paper, in which also will be recorded the results of experiments on the tem-
porary effect of change of temperature on the torsional elasticity and internal friction
of the metals used. When the wire had undergone this preliminary treatment, and
all the arrangements were complete, the bar VV, with its appendant cylinders or
spheres, as the case might be, was started by small impulses imparted by a worsted
‘thread, until the arc of vibration, as reckoned from rest to rest, had reached about
400 divisions of the scale (about 10° since 41'227 divisions represented 1°). After
the arc of vibration from rest to rest had subsided to about 200 scale-divisions, the
vibrator was again started, and this process was repeated until something like a
thousand oscillations had been executed.] Finally the vibrator was re-started for
the actual observations, through an arc of about 200 scale-divisions, and when
about 50 oscillations had been executed after this last starting the readings were
begun. Suppose that ay, b, ; ay, by; as, by ; ay, by s as, by, and a; are eleven consecutive

* In spite of the long period which has elapsed since this instrument was first made for me by the
late Mr. BECKER, of ELuiorr Bros., the spring still shows a slight amount of permanent yielding, which
during the last two years has altered the reading by ‘015 inch.

+ Either silver, platinum, or copper wires, well annealed, may be used with advantage. T should not
recommend unannealed piano-steel wire as used by MAXWELL; the last metal possesses, it is true, great
elasticity, but the internal friction of silver, platinum, or copper can, by annealing, be made considerably
less than that of the unannealed steel.

I The object of this treatment was to reduce the internal friction to its permanent condition, since
long rest, or sometimes even a comparatively short rest, always raised sub-permanently the internal
friction.

Sr2
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readings,® the ten corresponding arcs from rest to rest will be a, 40y, b, +ay, ay+by,
by+-ay, a;+by, byta,, a,+b, byta, a,+b;, by+a, The means of a;4by, by+ag;
by ay, az+by; ay+by, by+as; by, a,+b,, and of ag+bs, by+a, were written down,
and if these agreed well with each other, which was almost invariably the case, the
logarithmic decrement of the mean of the five means was taken. Now, say that
n single vibrations have taken place between the end of this and the beginning of
the next set of consecutive readings, the difference between the logarithms of the
first and second total means will, when divided by n+10, give the mean logarithmic
decrement for a single vibration. The logarithmic decrement was found to be con-
stant in each experiment within the limit of probable error; the deviations from
uniformity were sometimes in one direction and sometimes in the opposite, and there
was no evidence of any law of increase or diminution of the logarithmic decrement as
the amplitudes decrease. In the intervals between one set and another of the
readings, taken in the manner mentioned above, other readings were taken for the
purpose of determining the vibration-period ; the time of transit of the light across
the centre of the scale, first in one direction and then in the opposite, was recorded
for ten successive passages by means of a good watch provided with a seconds-hand, a
similar series being recorded after every 200 vibrations. These last observations
enabled the period of vibration to be determined with such exactness that we may
completely disregard any error arising from want of precision in this respect. From
time to time, at regular intervals, the readings of all three thermometers and of the
aneroid barometer were taken, so that the mean pressure of the atmosphere, the
temperature of the wire, and the temperature of the air in the box B could be calcu-
lated with the necessary accuracy. The greatest care was taken that the cylinders or
spheres suspended from the horizontal bar VV should hang vertically ; also that there
should be no appreciable pendulous motion of the wire; if such motion existed it
was checked by the hand before any of the readings were taken. Very great care
was also taken in determining the moments of inertia of the vibrator in the various
experiments, these being each obtained by several different methods,t which gave
very concordant results. T shall have occasion in a future memoir to dwell on the
various sources of error to which determinations of moments of inertia are liable ; so
it will suffice, perbaps, here to mention that this part of the work alone occupied my
entire attention for nearly two weeks. The following five experiments, or rather

sets of experiments, were made :—

Lxpervment 1.
The wire was of well-annealed copper, 97 centims. in length and 0:06272 centim.
in diameter. Two cylinders, each having a mass of 70:19 grammes, were used. These
* This number was always taken.

T The moments of inertia could be calculated with sufficient accuracy from the dimensions and mass
of the vibrating system; they were, however, determined also indirectly by the two methods employed

by MAXWELL.
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cylinders were made of paper wrapped round a metal core a sufficient number of times
to secure the requisite stiffness; the different layers of paper were pasted together,
and when the whole was dry the metal core was withdrawn ; the outside of each of
the cylinders was also coated with French polish to prevent the absorption of moisture.
The mean diameter of each of the cylinders was measured by calipers reading to 155gth
of an inch, and estimated to t5ig5th of an inch. In obtaining the value of the mean
diameter of each cylinder, twenty measurements were made, ten at equal intervals
along the whole length, and ten at the same intervals, but in a direction at right
angles to the first. The measurements showed a very fair uniformity of diameter
throughout the whole length, the mean being 10079 inches for one cylinder and
1'0108 inches for the other. In the calculations subsequently made it was assumed
that the diameter of each éylinder was the mean of the two last given, .., was
1'0093 inches or 2'5636 centims. The lengths of the two cylinders were also very
nearly the same, being 60°90 centims. and 60'85 centims. respectively ; accordingly
each cylinder was assumed to have a length of 60'875 centims. The ends of the
cylinders consisted of wooden disks, into the centre of which was let a small brass
disk provided with a screw, which was a companion to the screws at the ends of the
suspenders S, K, so that the cylinders could be screwed right up to the disks M, M
(fig. 8). The object of having the disks M, M, was to eliminate the effect of the
friction of the air about the ends of the cylinders,* for Professor STokES’s mathe-
matical investigations only apply strictly to cylinders of infinite length.

After the preliminary precautions previously mentioned had been taken the
logarithmic decrement was determined from a great number of vibrations with the
cylinders on ; the cylinders were then each turned round their axes through a right
angle, for the purpose of eliminating any error which might otherwise arise from the
section of the cylinder being slightly elliptical instead of circular, and the logarithmic
decrement was once more found. The cylinders were now unscrewed from the
suspenders, and, the brass caps having been for the purpose removed from the hollow
bar VV, the two brass cylinders %, &, were adjusted in the manner before mentioned,
so that the vibration-period might remain very nearly unaltered ; the caps were then
replaced. All the adjustments alluded to above were performed very carefully so as
to avoid jarring the wire, for if this precaution be not taken the internal friction will
be temporarily increased, and will not come back to its previous value until the wire
has been vibrated for a considerable time. A period of more than an hour was now
allowed to elapse, the wire during this time being kept more or less in a state
of vibration, but not through a greater arc than that represented by 400 scale-
divisions from rest to rest, when the logarithmic decrement was again determined.

* Tt would have been well to have had these disks much thicker. As it is, the disks would only
imperfectly serve the purpose for which they were intended ; the effect about the ends of the cylinders
was, however, completely eliminated in Experiment IV. It would appear, moreover, from the results
that with the long cylinders here used the cffect mentioned above is neglectable. '
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These processes were repeated during some eight or nine hours of each day through a
period of three days, with the following mean® results :—

Paper Cylinders on.

" Temperature of the air | Temperature of the Barometric height Period of a single d eclx:gg:xinih;::con e
in degrees Centigrade. wire, in inches, vibration in seconds. vibration
12-:02 12-43 [ 29-872 ‘ 6-8373 0036476+

Parer Cylinders off.

I
12:25 12:31 ; 29-817 6-8202 | -0009103

The moment of inertia of the whole vibrator when the paper cylinders were on
was 33773 in centimetre-gramme units.

Mathematical Formule necessary for the Investigation.

Before it can be shown how the results given above were made use of in finding
the coefficient of viscosity of air, it will be necessary to point out how the requisite
mathematical formule can be obtained. I will first take the case of a cylinder
vibrating horizontally under the influence of the torsional elasticity of a wire attached
to its centre and hanging vertically.

Conceive the cylinder divided into elementary slices by planes perpendicular to its
axis. Let 7 be the distance of any slice from the middle point, § the angle between
the actual and the mean positions of the axis, dF that part of the resistance expe-
rienced by the slice which varies as the first power of the velocity. Then, calculating
the resistance as if the element helonged to an infinite cylinder moving with the same
linear velocity, we have by Art. 31 of Prof. SToKES’S paper—

KM'r dg
dF = de’

where M’ is the mass of fluid displaced by the slice, g‘:‘:rgg, 7= the vibration-period,

and % is a constant, provided the vibration-period, the diameter of the cylinder, and
the nature of the fluid remain unchanged.

# T have not thought it necessary to give here more than the mean values, as in a portion of a paper
on the internal friction of metals, which I hope shortly to be able to offer to the Royal Society, I have

entered fully into the details of experiments very similar to these.
t Mean of eight trials, each of 200 vibrations, the numbers varying from ‘0036300 to ‘0036969,
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Let G be the moment of the resistance, { the whole length of the cylinder, ¢ the
radius of the cylinder, and p the density of the fluid ; then

M’ = wpaidr,
and
w2k patl® df
G= 127 dt’
whence
7 pa’l
log, dec. = giT

I being the moment of inertia of the whole vibrator ; thus

7k pa®l®
logwdec.=—§zf——logme. e (Y

When we have a pair of cylinders of equal mass and dimensions suspended
vertically from points equally distant from the axis of the wire, we can easily prove in
a manner similar to the above that the logarithmic decrement due to the resistance of
the air on the cylinders is expressed by the formula

2 p B .
lOg]O deC. e —-P—]"G—I—— 10g10 e. . . . . . . . . (2):e

If the logarithmic decrement be known, we can determine from (2) %', and hence,
by interpolation, from the table given on p. 46 of Prof. STOKES’s paper, m, this last
being connected with u, the coefficient of viscosity, by the formula—-

__ﬂ},\/?r?
m= g AR R (3)

Since B, 7, and p are known, we can from (3) find p.
In the case of two spheres of equal mass and dimensions there is no difficulty in
obtaining the following formuls from the data on p. 32 of Prof. STokEs’s paper :—

Tk M/d? _
lOglO dec. = m 10g10 [ (4)

where I is the moment of inertia of the whole vibrator, M’ the mass of fluid displaced
by each sphere, and % and % are connected with p by the equations—

* In this equation and in equation (4) the effect of the rotation of the cylinders about the axes is
neglected. For the necessary correction see the end of the paper.
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9 2
= L e €
l 2+4:Cb ’ 7Tp H ( )
9 ol 1 ,
= — o - O ()
k 4a TP {l_’-a Vomp |? ( )

in which « is the radius of each sphere.

Application of the Mathematical Formule to the Results of Fuperiment I.

It will be seen that the logarithmic decrement with the paper cylinders on is
‘0036476, whilst with the paper cylinders off it is 0009103 ; therefore the logarithmic
decrement due to the resistance of the air on the cylinders only is approximately
*00273873. I write ‘ approximately’ because there are certain corrections to be applied
which I will now proceed to describe. In the first place, the vibration-period, when
the paper cylinders were on, though nearly the same as when the cylinders were off,
was not quite the same. I therefore determined approximately the value of g,
without making this or the other small corrections to be mentioned presently, and
used this value to obtain approximately the logarithmic decrement which would be
due to the resistance of the air on the cylindrical bar VV and the cylindrical portions
S, K, of the suspenders. The logarithmic decrement due to the resistance of the air
on the other portions of the suspenders and on the disks m, m, was obtained by making
independent observations, in which the bar was vibrated first with the suspenders on
the bar, and then with the suspenders off, but with cylinders of equal mass placed
inside the hollow bar VYV, so that the time of vibration should remain unaltered.

Suppose that A represents the logarithmic decrement due to the resistance of the
air on the bar and the suspenders, and that ¢,, t,, are the vibration-periods with and
without the paper cylinders respectively, then, with a sufficient degree of approxima-
tion, provided ¢, does not differ much from ¢,, we have the amount to be added to the
uncorrected logarithmic decrement equal to

A (1 —i>
i

Again, the temperature of the air and the pressure of the atmosphere were not
quite the same with and without the paper cylinders. It can, however, be shown
that for the small differences of temperature and pressure which we have here the
logarithmic decrement will be independent of the temperature * and vary directly

* The logaritﬁmic decrement will not be independent of the temperature unless p varies as the
absolute temperature. If we adopt the results of recent experiments, the logarithmic decrement should
g_f%.{%, where ¢ is the temperature in degrees Centigrade. The correction
which this would entail I have neglected, as being inappreciable in these experiments.

approximately vary as
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as the square root of the pressure; the amount to be added to the uncorrected
logarithmic decrement, owing to the above causes, will therefore be

>\<1— E),
Pe

where p; and p, are the pressures with and without the paper cylinders respectively.

Further, when the cylinders were screwed on to the suspenders, about 4 mms. of
the latter entered the former, so that the observed logarithmic decrement was less
than it should be by an amount which would be nearly equal to the logarithmic
decrement due to the resistance of the air on two vertical cylinders 4 mms. in
length and 0'3366 cm. in diameter; this could be calculated to within a sufficient
degree of approximation by using the approximate value of w. The amount in this
particular case was *0000037.

Lastly, the temperature of the wire was not the same with and without the paper
cylinders, but, as the effect of change of temperature had been determined previously,
this difference could be allowed for.

No correction is required for any variation in the internal friction of the wire itself,
arising from difference in the vibration-periods with and without the paper cylinders ;
for I had previously satisfied myself that the diminution of amplitude resulting from
internal friction is nearly independent of the time of vibration.

Accordingly we have the following amounts to be added to the uncorrected
logarithmic decrement :—

Correction.

For difference of time of vibration with and without paper cyhnders +-0000008
For difference of pressure of air . . . . . . . .o . —+0000005
For difference of temperature of the wire . . e e —-0000002
For portions of suspenders which enter the cyllnders e +-+0000037
Total . . . . . . . . . . 00 +-0000038

Corrected logarithmic decrement . . . . . . . . . . . . .l 0027411

In calculating p, the density of the air, I have assumed that the latter is half
saturated with moisture, and that the mass of a cubic centimetre of dry air at 0°C.,,
and under a pressure of 299217 inches of mercury, is 0012980 gramme ; thus, in

the present instance,
298722 x 206 273 . .
P=""g0us17 X534 10s X 001293="0012334.

The distance from each other of the axes of the two paper cylinders was
20'80 centims., and this distance was maintained in all the experiments which
follow, except the last, where it was 2078 centims.

MDCOCLXXXVL 5 @
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From these and the previous data we can, by means of equation (2), get
K =16122;

and hence, by interpolation, we can obtain from the table on page 46 of Professor

STOKES’S paper .
m = 1'1327.

Again, substituting this value of m in equation (3), we obtain as the value of u
in C.G.S. units, at the temperature of 12°:02 C,

*00018294.

Experiment 11

Two hollow cylinders, made of drawn brass tubing, and closed at both ends, were
used instead of the paper cylinders. As measured by a gauge reading to t§5th of a
millimetre, the mean diameter of one cylinder was 096446 centim., and of the other
0'96279 centim. These values were obtained by gauging each cylinder in ten different
places, equidistant from each other, and in the calculations each cylinder was assumed
to have a mean diameter of 0'96363 centim. The length of one cylinder was
60°92 centims., and of the other 60'85 centims., whilst the mean of these numbers, 7.c.,
60°885 centims., was assumed to be the length of each cylinder. The mass of each
cylinder was 91°900 grammes, and when the cylinders were on the bar V V the moment
of inertia of the whole vibrator, in centimetre-gramme units, was 36702.. The value
of the vibration-period was 70590 seconds. The temperature of the air was 14°'63 C.,
and the barometric height 29-707 inches. The uncorrected logarithmic decrement due
to the resistance of the air on the cylinders was *0012338, and the corrected logarithmic
decrement was *0012546. From these data was deduced a value of p, at the tempera-

ture of 14°:63 C., of
‘00017718.

Fxperiment I11.

Everything else was arranged in the same manner as in Experiment L., but, instead
of the annealed copper wire, an annealed silver wire, 97 centims. in length and
0'100863 centim. in diameter, was used. The paper cylinders employed in Experi-
ment I. were used here, and when these cylinders were on the vibration-period was
3:0198 seconds. The temperature of the air was 11°69 C., and the barometric
height 80'207 inches. The uncorrected logarithmic decrement due to the resistance of
the air against the cylinders was "0016871, and the corrected logarithmic decrement
*0016905. The value of u at the temperature 1169 C. was calculated to be

*00018143.
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Experiment IV.

Acting on the advice of Professor StokEs, I modified Experiment III. as follows :—
The logarithmic decrement was determined with the paper cylinders already used, and
also with another pair of the same diameter, and made in the same manner, but having
a length of 7700 centims., the vibration-period being by the usual device maintained
very nearly the same in both cases. The difference between the two logarithmic
decrements, "0024564 and "0009933, will therefore equal the logarithmic decrement
due to the resistance of the air on cylinders having each a length of (60°875-7-700)
centims,, 4.e., 53'175 centims. When the longer paper cylinders were on the bar the
vibration-period was 2:9994 seconds. The temperature of the air and the barometric
height were 10°°64 C. and 80057 inches respectively. The uncorrected logarithmic
decrement was 0014631, and the corrected logarithmic decrement "0014638. The
value of u at the temperature of 1064 C., deduced from the above data, was

‘000179455,

Experiment V.

The previous experiments had given such closely according values of w that, though
my investigations on the internal friction of metals only required that the formulee
for cylinders should give consistent results, I felt that it would be of interest to
ascertain whether the use of spheres would be attended with the same satisfactory
agreement. The main difficulty to be encountered with spheres is that the mass of a
properly constructed spherical shell makes it rather unsuitable for experiments on the
viscosity of gases. After thinking over various plans of obtaining hollow spherical
shells of sufficiently accurate make, and not feeling satisfied that I should be able to
get, without much difficulty, what I wanted, I decided on using solid spheres made of
fairly light wood. These spheres were specially turned for me, with instructions to
make each as exactly as possible 2% inches in diameter. The turner executed his
commission very fairly, for, on gauging each sphere at ten different places with calipers
reading to tggoth of an inch, I found that none of the readings differed from the
mean by so mnch as '3 per cent., and that the mean diameters of the two spheres
were 2'5108 inches and 25007 inches respectively. In the calculations each sphere
was reckoned as having a diameter of 25055 inches or 6364 centims. The masses of
the two spheres were not quite so equal as I could have wished, the apparent mass of
one in air being 64'823 grammes, and of the other 63:761 grammes. No appreciable
error will, however, be introduced by considering the apparent mass of each in air to
be 64292 grammes. The correction for the mass of air displaced by each sphere
amounted to 0-168 gramme, so that in the calculations the mass of each sphere was
taken as 64'460 grammes.

56 2
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The spheres were attached to the suspenders S, K, in the same manuer as the
cylinders, but the disks were now dispensed with. The moment of inertia of the
whole vibrator when the spheres were on was 80,927 in centimetre-gramme units, the
vibration-period was 28791 seconds, and the temperature of the air and the baro-
metric pressure were 9°97 C. and 29'607 inches respectively. The uncorrected
logarithmic decrement due to the friction of the air on the spheres was ‘0003462, and
the corrected logarithmic decrement was *0003483.

In deducing the value of u from the above data by the aid of equations (4), (5),
and (6), I assumed, in finding 2kM’, a value for p equal to the mean of that got from
the other experiments ; this step is admissible, because 2kM’ is very small compared
with I.*¥ Having determined the value of X’ by means of equation (4), I substituted
it in equation (6), and thus obtained a quadratic equation for finding n. The
quadratic may, however, be converted into a simple equation by making use of the

. . 1 2uT .
same value of u as above in calculating the term - ,\/ %’L—g, which was thus found to

be 016085. The last number is not small compared with unity, and, had the final result
proved to be as much as 10 per cent. greater or less than the mean of those got from
the other experiments, the above conversion of the quadratic into the simple equation
would not have been admissible. It will be seen eventually, however, that the
conversion is legitimate, and the value of p at a temperature of 9°:97 C. as deter-
mined from the simple equation is

*00019334.

Mathematical Formule required for the Effect of the Rotation of the Spheres or
Cylenders about thevr own Axes.t

Professor G. G. SToKES has been good enough to furnish me with the following
formulee for the corrections not yet made for the effect of the rotation of the spheres

or cylinders about their own axes :—
Let A\, be the logarithmic decrement due to the rotation, then for the spheres

3

3
I P R .
2uM’r v va  2(va)?
Ao = T, T logge, . . . . . . . (7)

L o

where I is the moment of inertia of the whole system, 7 is the time of a vibration

* In fact, is quite neglectable in the case before us.
+ What follows was added Sept. 16, 1886.
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from rest to rest, M’ is the mass of fluid displaced by each sphere, a is the radius of
the sphere, and -
= P
v= A/

In the case of the cylinders, which were hollow, we have to take into account the
effect of the air both inside and outside. For the air outside we may take

2M’ur
)\,,:——I—p——logloeP,. N €))

where P is the real part of the imaginary expression

1L 35 1857 _ 123579  1A57911
VY i@ma) T 12(8may  12.38may T 123 A@may "
13 1235 | 123517 ’

U {@ma) " 12@map T 123@may

ma

where
m = Z——f (cos 45°4+/ —1 sin 45°).

On expanding P in descending powers of ,\/ Zf a, we get

_ /g5 08T 04922 |
P=—stlbt i ap— o (9)

where v

= ,\/Z:f.a.

This series may be used with advantage in all the experiments relating to the
cylinders to estimate approximately the effect of the air outside, but, unless the value
of f is decidedly larger, the value of A, is best found from the formula

B4 -1
Ip Oglo e.(k-—l)zm’ . . . . . . . . (10)

where %, ¥/, are the quantities tabulated at p. 46 of Professor STOKES’s paper.
The corrections, as calculated from both formulee, were found to agree satisfactorily.

For the air inside we may use, for such values of V :%’ a as we have here, the

formula

2M’ ’
)\a="~i;&(—Q)1°gloe’ coee e (1)
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where M’ is the mass of air inside, and Q is the real part of the imaginary expression

2 4 6
i 2 4 -
9.4 Ml + gmg (M) + ot -

b

1+ 2i4 (ma)2+§7%2f€ (ma)t+ ”421———6273 (ma)t+ ...
which is of the form

A+4/—1B

C+4/~1D
and of which the real part is

AC+BD
C+D*

In the following table will be found the corrections necessary to be made for the
rotations of the spheres and cylinders about their axes :—

CYLINDERS.
Number of d AL d C 1 th

imber o t 1 . . 3 o e s orrected logarithmic

ex;)eriment. egﬁr;xg&ti%l’llc;?;fte Effect of air outside. | Effect of air inside. r egecrenixf:.

axes. * *

I. ‘0027411 -0000313 *0000011 ‘0027087

II. 10012546 *0000030 *0000000 ‘0012516

III. *0016905 ‘0000173 0000019 +0016713

IV. ‘0014638 *0000150 ‘0000017 ‘0014471

Spheres.
V. ‘0003483 ‘0000159 .. :0003324

There is still a further slight correction to make, inasmuch as the mercury of the
barometer was not at 0° C. when the aneroid was compared with the mercury baro-
meter, whereas the density of the air was calculated on the assumption of the mercury
being at 0° C. The correction is very slight, but the closeness of agreement of the
different experiments justifies us in making it. It will be sufficient for this purpose
to multiply each value of u as determined from the above table by (14:00018¢),
where ¢ is the temperature at which the aneroid was compared with the mercury
barometer. Applying all the corrections, the final results are as follows :—

* In making these corrections, an approximate value of u was used.
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TasLe II.—Cylinders.

Distance m ture i Coefficient of
Number of Length in Diameter in between the |Vibration-period em(ll)era, ure in ~0¢ .‘éle"f ol
experiment, centims. centims, centres in in seconds. o egr‘ees v 1scos; y ot alr
centims. entigrade. |in C.G.S. units.
L 60:875 2:5636 20-80 68373 12-02 00017900
II. 60-885 0'9636 2080 70590 14-63 ‘00017680
IIL 60-875 2:5636 20-80 3:0198 11-69 ‘00017767
IV. 53175 2:5636 2080 2:9994 10-64 ‘00017581
Spheres.
V. ! . ‘ 6364 ’ 20-78 ‘ 2:8811 ‘ 997 00017626

Taking the means of the numbers in the sixth and seventh columns, we find that
the value of pu at a temperature of 11°79 C. is

00017711,

The Effect of the Presence of Aqueous Vapour on the Viscosity of Air.

The above experiments extended over a period of some months, during which the
air was in various conditions with respect to being saturated with aqueous vapour, so
that for a rough approximation we may assume that the mean value for p just given
will apply to air half saturated with vapour at a temperature of 12° C, and it would
appear that the presence of the small quantity of aqueous vapour which this implies
would not affect the value of u to an extent equal to that of the probable error in
experimenting. From the careful investigations of Mr. CRoOKEs* we learn that at a
temperature of 15° C., and under pressures of from 760 to 350 millims., the presence
of aqueous vapour has little or no influence on the logarithmic decrement. By
the aid of Professor SToKES’S note,t I have estimated that at 15° C., and under a
pressure of 760 millims, the air when saturated with aqueous vapour would be more
viscous than perfectly dry air] to the extent of only ‘2 per cent. It is not until the
air is under a less pressure than 850 millims. that the aqueous vapour begins to show
appreciable effect, but when the rarefaction is great the moist air becomes considerably
less viscous than dry air.

According to MAXWELL§ damp air over water at a temperature of 21°11 C., and
under a pressure of 101 millims., is less viscous than dry air by about g'5th part.

# ¢ Phil. Trans.,” Part II., 1881, p. 427.

+ See p. 440 of the above paper.

1 Mr. Crooxes adopted great precautions to render the air dry.
§ ¢ Phil. Trans.,” vol. 156, 1866.
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On the whole it would seem that the aqueous vapour in the air used in my
experiments would hardly influence the value of u to the extent of ‘1 per cent.

The presence of carbon dioxide in the air would still less affect the result, as not
only is the viscosity of carbon dioxide not very remote from that of air, but the
amount of the gas present is also very minute.

Comparison of the Results of Recent Investigations of the Coefficient of
Viscosity of Air.

In the beginning of this memoir I pointed out the very large discrepancies which
existed between the results of different experimenters, but, since I entered on my
task, not only have I acquired fresh information respecting what had already been
done, but also quite recently fresh investigations have been made. Table IIL
contains the required information.

Tasre III
Authority. Coeficient of viscosity Method.
O. E. Mever* . . . . 0001875 Oscillating plates.
” e 0001727 Transpiration.
Pyrus* . . . . . . 0001798 '
SceNgEBELIT . . . . ‘0001707 ’
OBERMAYERY. . . . . ‘0001705 '

In order to reduce my own observations to 0° C., I have made use of the investiga-
tions of Professor Stnas W. HormAN on the effect of temperature on the viscosity of
air.f According to the exceedingly careful and elaborate observations of this experi-
menter, the coefficient of viscosity of dry air is not proportional to the absolute

temperature, but
e = po(14-0°002751¢~ 0:00000084¢2), . . . . . . (12)

where ¢ is the temperature in degrees Centigrade, and u, u,, are the coefficients of
viscosity at ¢° C. and 0° C. respectively.

My own observations were made with too small ranges of temperature to show the
relation between the value of p and the temperature, but the above formula expresses
more nearly this relation as deduced from my experiments than the formula

= P‘O(l +O'00366t).
* ¢ Phil. Mag.,” vol. 21, 1886, p. 220.

t ¢ Archives Seci. Phys. Nat.,” vol. 14, 1885.
I ¢ Phil. Mag.,” vol. 21, 1886.
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Adopting, therefore, formula (12), we have ‘the following equation for determining
the value of u at any temperature :—

pe ="00017155(14"002751¢—00000034#%). . . . . . (18)

The differences between the observed and calculated values of w; for the five
different sets of experiments are given below :—

Experiment. Obgerved value of u;. | Calculated value of p,. Difference.
L. 00017900 00017760 +-00000140
IT. 00017680 00017850 —+00000170
ITL. 00017767 00017704 ++00000063
Iv. 00017581 ‘00017653 —-00000072
V. ‘00017626 00017622 400000004

The probable error is about ‘2 per cent., and, considering the manner in which the
five sets of experiments varied as regards their conditions, it would seem that, even
when all allowance has been made for aqueous vapour, &c., the number '00017155
must represent the value of p, for dry air within at least % per cent. Now, this
number agrees fairly with the values of w, obtained by other observers with the
transpiration method ; it is, however, more than 9 per cent. less than that obtained
by MEevER with oscillating plates, and by MAxweLL. The mathematical difficulties
attending Professor MEYER'S method of oscillating plates have been already mentioned,
but the method of Professor MaxweLL does not seem open to these objections, and
indeed appeared to me to be so good that I for some time attempted, though in vain,
to account for the difference between MAXWELL'S result and my own. Professor G.
G. StoxEs has, however, kindly interested himself in the matter, and has shown in
the accompanying note the possibility of MAXWELL’S result being too high. I may
perhaps be allowed to add that, if we only take the first two of the five sets of
MAXWELL'S experiments, in which two the distances of the fixed from the oscillating
plates are so great as to render any error such as suggested by Professor Srtokes
very small, we obtain a value for the coefficient which is nearly identical with that
obtained by myself.

MDCCCLXXXVI. hH



786 PROFESSOR G. G. STOKES ON THE COEFFICIENT OF VISCOSITY OF AIR.

ADDENDUM.

Note on the preceding Paper, by Professor G. G. StokEes, P.R.S.
(Received January 14, 1886.)

The consistency of Mr. TomLiNsoN’s different determinations of the coefficient of
viscosity of air, notwithstanding the great variation in the circumstances of the experi-
ments, and the consistency with one another of the numbers got by a different
process by MAxwEeLL, led me to endeavour to make out the real cause of the differ-
ence, and I think the main part, at any rate, of it can be explained by a very natural
supposition.

The fact that Mr. TomrLINsoN worked with air in its ordinary state, whereas
MaxwELL’S air was dry, even if it tends in the right direction, would evidently not
go nearly far enough. But it occurred to me that the effect of any error of level in
the movable disks employed by MAXWELL must have been much greater than might
at first sight appear. For suppose a very small error § to exist, and suppose the fixed
disks adjusted to be parallel to the movable ones in the position of equilibrium of the
latter. Then the two systems must be, very nearly indeed, parallel throughout the
motion, since the angle of oscillation of the movable disks to one side or other of the
position of equilibrium is very small. If 2 be the whole amplitude, the greatest
error of parallelism will be of the order 8a, and it would naturally appear at first sight
that the effect of so small an error of parallelism must be insignificant for any such
error of level as we can reasonably suppose to have existed. But a little consideration
will show that this need not be the case when the distance between the fixed and
movable disks is very small compared with the diameter of the latter. For suppose
the disk to have been rotated through a small angle p round a vertical axis; the
rotation p may be decomposed into a rotation p cos 8 round the axis of figure, and a
rotation psin 8 round a horizontal axis in the plane of the disk. As regards the
former, the motion takes place as supposed in the investigation. But as regards the
latter the disk oscillates about a horizontal axis in its own plane. Now, when the
disks are very near one another this oscillation entails a squeezing thinner of the
stratum of air opposite to one half of the disk, and a widening of the stratum opposite
the other half, the two halves being alternately squeezed thinner and widened ; and,
since for such slow motions the air is practically incompressible, this transfer of air
cannot be effected without a motion of the air along the surface of the disk far larger
than what would be produced by an equal rotation about the axis of figure. Accord-
ingly a very slight error of horizontality in the movable disk might produce a sensible
error in the result, though an error of direction of similar amount in the orientation
of the fixed disk would be quite insignificant in its influence on the final result.

This conclusion is fully borne out by the result of mathematical calculation founded
on the equations of motion of a viscous uncompressed fluid. The calculation becomes
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very simple if we treat the distance between the disks as very small compared with
the radius, neglect the special actions about the edge, and further neglect the inertia
of the air, as we safely may, since it was small in MAXWELL'S experiments, especially
those in which the disks were at a small distance apart, and therefore the influence of
viscosity the greatest; or those again in which the air was rarefied.

Let the plane of a movable disk in its position of equilibrium be taken for the
plane of , ¥, the axis of figure for the axis of z, and the intersection of a horizontal
plane with the plane of the disk for the axis of #; and let the opposed fixed plane be
parallel to the plane of , 7, and at a distance A from it. Let ¢ be the radius of the
disk. - ~

First, as regards motion round the axis of figure. Let w be the angular velocity of
the disk. Then, according to the simplifications adopted, the motion of the fluid will be
a motion of simple shearing, such that the velocity at a point whose semi-polar coordi-
nates are 7, 0, 2, will be wr(h—2)/h in a direction perpendicular to the radius vector.
It will suffice to write down the moment of the force which this calls into play, which
is

Tt

L .\

Next, for motion round the axis of 3. Let " be the angular velocity; u, v, w, the
components of the velocity; U, V, the mean values of u, v, from 0 to 2. Consider the
prism of fluid standing on the base di dy, and extending between the planes. As the
volume of the prism is diminished at the base by o’z da dy d¢ in the time dt, the excess
of the volume of the fluid which flows out across the face hdy, whose abscissa is
x+dx, over that which flows in across the face hdy, whose abscissa is x, plus the
similar difference for the pair of faces hdx, must equal o'z dx dy dt.  This leads to the
equation

kdU—Hw—-—wx T ¢

But, for motion between two close parallel planes, the velocity parallel to the plane,
and its components in two fixed directions in that plane, vary as z(h—z), and there-
fore '

Gz(h—-z)
]L2 .

U, o="CTEv. .

The first equation of motion is

(3)

dio _ d d~u rV?/
de — M a2/

Now, on account of the smallness of %, the space-variations of the components u, v,
5 H 2
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of the velocity are much greater for z than for « or y. Hence in (3), and the corre-
sponding equation for v, the first two terms in the right-hand members may be

omitted, giving, by (2)’,

LY Ity
de — W 7 dy — W
and then, from (1),
d*p Pp _ 12p0
wtap=""p ©
or, in polar coordinates,
ldp 1y _ 12
d7‘3+7 0l7+r9d€2 5! cosf; . . . . . . . (4

and if we take, as we may, p to mean the excess of pressure over the pressure in
equilibrium, we have the conditions that p shall vanish when »=a, and that p shall

not become infinite at the centre.
The equation (4) and the conditions at the mouth and centre may be satisfied by

taking
p =f(r)cos 6,

which gives, from (4),
12p0’

PO+ 0= ) = =

The integral of this equation is

) — _oue’ B
f(") — T o ? +AT+T’

where A, B, are arbitrary constants. The conditions at the centre and mouth give

Suw’a?

B=0o, A= VR

whence
_ e o3
p_%a(aﬁ 73) cos 6.

The moment of this pressure about the axis of y is [[ p.» cos O.rdrd, or

7T pe’ b
_—8"'];3-—. . . . . . . . . . . (B)

The moments (B) and (A) are as a’w’ to 4%, and the works of these moments in
the time df are as a’w™ to 4h%»®% If this ratio be denoted by = to e, and w, o', are
the components of an angular velocity round an axis in the plane of xz, inclined at an

angle & to the axis of 2,
472

tan?§ = s
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In MAXWELL’S experiments o was 528 inches, and when the fixed and movable
disks were closest & was 0'18475. If we suppose the whole loss of energy 8 per cent.
greater than that due to rotation round the axis of figure, to which it was deemed to
be due, we have n=008, giving §=1° 8. Now, no special adjustment was made to
secure the strict horizontality of the movable disks, or at least none is mentioned ; the
final adjustment is stated to have been that of the fixed disks, which were presumably
adjusted to be parallel to the movable ones, and at the desired distance. Hence such

small errors of level as that just mentioned may very well have occurred.

Second Note.—On the Effect of the Rotations of the Cylinders or Spheres round their
own Axes in increasing the Logarithmic Decrement of the Arc of Vibration.——
By the same.
(Received October 22, 1886.)

In Art. 9 of my paper on Pendulums I pointed out that in the case of a ball
pendulum the resistance due to the rotation of the sphere round its axis need not be
regarded, on account of the large ratio which the distance of the centre from the axis
of suspension bears to the radius of the sphere. In Mr. ToMLINSON’S experiments the
corresponding ratio is not near so great, and its squared reciprocal is not small enough
to allow us to neglect the correction altogether, especially in the case of the spheres,
the radius of which is much larger than that of the cylinders. In both cases the
problem admits of solution.

In both cases the motion of the suspended body may be regarded as compounded of
a motion of translation, in which the centre oscillates in an arc of a circle, and a
motion of rotation about its axis of figure, supposed fixed ; and, the motion being
small, the effects of the two may be considered separately. It is the latter with
which we have at present to deal. As regards the motion of translation, the spheres
or cylinders were sufficiently far apart to allow us to regard each as out of the
influence of the other, and accordingly as oscillating in an infinite mass of fluid ; and
this is still more nearly true as regards the motion of rotation. The problem, then,
is reduced to this: a sphere or cylinder performs small oscillations of rotation about
its axis of figure, which is vertical and regarded as fixed, in an infinite mass of viscous
fluid ; it is required to determine the motion, and thereby to find the effect of the
fluid in damping the motion of the system of which the suspended body forms a part.

In the case of the sphere the problem of determining the motion of the fluid is
identical with that solved by Professor Von HELMHOLTZ in a paper published in the
40th volume of the ‘ Sitzungsberichte’ of the Vienna Academy, p. 607, and reprinted
in the first volume of his collected works, p. 172, with the exception that the arbi-
trary constants which occur in the integral of the fundamental ordinary differential
equation are differently determined, since the condition that the motion shall not
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become infinite at the centre is replaced by the condition that it shall not be infinite
at an infinite distance. ‘

In the present case the motion is necessarily symmetrical about the axis, so that it
is alike all round any circle that has the axis for its axis ; it is, moreover, tangential
to the circle. Let the fluid be referred to polar coordinates », 6, = ; » being the
distance from the centre, # the inclination of the radius vector to the axis, and = as
usual. Then, taking p, p, to denote the density and coefficient of viscosity, and
observing that v=gq cos =, where ¢ is the velocity, we easily get from the second
equation of motion, by putting, as we may, w=0 after differentiation,

Po 2dg, 1 Al g% g _pdy_
dr* " r dr " r?sin @ d@(sm 0 d0>—;2 sin? @ pdt LR - (1)
and we have the condition at the surface—
g=wasin @ when r=a, . . . . . . . . (2)

where o is the angular velocity of the sphere, and « its radius.

The motion with which we have to deal is periodic, subject to a secular diminution.
The latter being actually very slow, it will suffice, in calculating the force of the air
on the sphei‘e, to take the motion as periodic, and expressed, so far as the time is
concerned, by the sine or cosine of nz. It will be more convenient, however, to use
the symbolical expression e, where ¢=,/(—1). The general equation (1) and the
equation of condition (2) can both be satisfied by taking ¢ to be expressed, so far as ¢
is concerned, by sin §.  Assuming, then—

g=c"sinff(r), . . . . . . . . . . (3)
and writing
ipn__imp__ o
W= (4)
we have
/ 2 ., 2 op
f’(r)—{-;j (fr‘)—ﬁf(v)—m*j(o) N )

Taking +m for that root of the imaginary m® which has its real part positive, we
have for the integral of (5), subject to the condition of not becoming infinite at an

infinite distance—

f(?"):A(;"’“'(l—l-l). N ()

r et

Omitting the pressure in equilibrium, we shall have for the force of the fluid on an
element of the sphere a tangential pressure (say T, referred to a unit of surface)
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acting perpendicularly to the plane passing through the axis and the element, the
expression for which, reckoned positive when it acts in the direction of = positive, is

T = M<§%—%>r=a = pe™ gin 6<f (@) —f%t~>> ;
and the moment of the force taken all over the sphere is
KT 2ma? sin f.a sin 0 df = %wpaSe""f<J" () _f((?) )
-2

if w'=p/p, and M’ is the mass of the fluid displaced by the sphere.
Now we have, by (2), (3),

wa = é"f{a),

whence the expression for the moment becomes

(-1

To get the whole moment, the above must be doubled, as there are two spheres. If
% be the angular distance of the vibrating system from the position of equilibrium,
we may write d3/dt for w; and if the mixed imaginary within parentheses, with
sign changed, be denoted by P+:Q, the real part, P, will be that which affects the
arc of vibration, the imaginary part falling upon the time, which we do not want.
The Napierian logarithmic decrement in one vibration will be got by dividing half
the real part of the expression for the moment of the forces by the moment of inertia,
or, say, MK®% It will therefore be 2M’n/'P/MK?.
Now we get, from (6),
.3
af’( ma+3-rM.
f (OL) 14+ ~1 ’

ma

and, taking the real part of this, we get finally, after reduction,

3 3
,M, va + (3] + a+ 21/20[,2

MK 117,......(7)
T4 —of o

va  20%°

Nap. log. dec.=

where v = /\/<9# 7>
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In the case of the cylinder the motion is in two dimensions, and is most con-
veniently referred to polar coordinates r, 8, the origin being in the axis. The radius
of the cylinder will be denoted by a, the outer or inner radius according as we are
dealing with the air outside or inside.

The mode of proceeding is precisely analogous to that in the case of the sphere,

and, ¢ being the whole velocity, we have

q=¢e"fi(r), . . . . . . . . . . . (8

where

R F O = fi) =) =05 . . . ... (9)

and the condition at the surface gives
ef(e) =wa. . . . . . . . . . . (10)

If T be the tangential pressure on the cylinder,

T=j;p,<@—-z>,.........(11)

dr 7/r=a

the sign being 4 or — according as we are dealing with the air outside or inside.
The moment of this pressure on a length, , of the cylinder is

07 , 1 , Jfafy (a
: i‘&wpcv*le’"t(ﬁ (a)-——gfl(a)>=;|:2M/u <~]j;:zf7))—1>m. oo (12)

The equation (9) cannot be integrated in finite terms. Nevertheless, in the case of
the air outside, the expression (12) for the moment may be obtained in a finite form
in terms of two functions, &, &, which I had occasion to tabulate for the purpose of
finding the resistance of a viscous fluid to a pendulum of the form of a cylindrical
rod.

Putting, as in my former paper,

AN =F0 o ()

(/s Jo» are the functions there denoted by F,, F,), we have
17 1 vy b ;
RO+ 0= =0 . . ... (4

Now in both problems (that of my former paper and that of the present note) the
function f(r) satisfies the same differential equation (14) and the same condition of
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vanishing at infinity. Hence the function fj(r) is the same in the two cases, save
as to the value of the arbitrary constant, which is a factor of the whole, and which
disappears from the expression (12) as well as from those of % and %'

The definition of % and £’ is given by equation (99) of my former paper, viz. :—

4/ (@) 7
) = =k—ik. . . . . . . . . . (15)

Now, by (13), (14), and (15),

1@ @), maf(@)_, ktl—ik' =1+ K20
G R € T () R S B e O NN

whence we get, as before, for the part of the logarithmic decrement due to the
external air, in consequence of the rotations of the two cylinders round their own
axes, M’ denoting the mass of air which would be displaced by one if solid and of
radius a,

M B8 L (1e)
MK (h—1p+ 4>

Nap. log. dec. =

In the Table given in Art. 87 of my paper, m denotes half the modulus of ma, or

This Table is not available for calculating the effect of the internal air, for which we
must have recourse to the differential equation (9). The integral of this equation,
expressed in ascending series, subject to the condition of not becoming infinite at the
origin, is

mid iy MmOy
Ailr) = {H‘ 2.4 "'2426"'242627"' }
which gives
mPa? mitat  mbab
@ _ & 246728687 (17)
Sfi(@) - 1+m2a2+ mtat 4 mba® + ottt
24 1 24%6 " 24%628 "

Let the numerator of this fraction be denoted by E-+F, and the denominator by
G++H, where E, F, G, H, are real ; then the real part will be EG+4FH divided by
G*+H?, and we shall have for the correction due to the internal air

w EG+FH
MGG e (9

Nap. log. dec. =

MDCCCLXXXVI. 51
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When the modulus of ma is small, it is rather more convenient to expand (17)
according to ascending powers of ma. This may be done by actual division, or more
conveniently by assuming a series with indeterminate coefficients, and using the non-
linear differential equation of the first order in 2 obtained from (9) by putting
S (r)y=zfi(r). Carried as far as to a'?, the development is

m2a®  miat  mba® mBa® | 13m%1°  11mi2al? .
4 96 T 153623040 T 4423680 55050240 °

and, denoting the modulus of ma by f, and taking the real part, we have

Nap. log. dec. =

O [+ f° 11710
B FO - Lo

96~ 23040 ' 55050240 "

This series must not be used when f'is at all large, as the convergence is too slow,
and, as appears by a theorem due to CaucHY, it becomes actually divergent when
J=38340% nearly, whereas the series in (17) are always convergent, and when f has
the above value converge rapidly.

When f'is decidedly large the series in (17), though ultimately convergent, begin
by diverging, so that the calculation is troublesome, and morcover my Table giving k&
and k" is not carried beyond f=8, as the calculation by a different method then
becomes very easy. In this case we should employ the integral of (9), which is of the
form e™ or e multiplied by a descending series. The former exponential only will
come in when we are treating of the external air, and the latter only when of the
internal.

For the external air the integral is of the form

1.3 1235 12.325.7
— - g% — —
fi(r) = Bemr {1+1.(8m'r) 1.2(8mr)y T 1.238mryp " " } .- (20)

the signs being alternately + and —, and the new factors in the numerator being two
less and two greater than the last factor in the term before. We get from (12), (20),
and the expression for the logarithmic decrement in terms of T and the moment of
inertia, '

* The square root of the smallest real root of the equation
P
T4 2426
The series would have become divergent still earlier if the equation just written had had an imaginary

root with a modulus smaller than 3:340. . 2

1 .o.=0.
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35 1357 123579

141 8ot T2@may " 123@map T 1)
L. 18 _ 1835 1357 -

t18ma " 1T2(8may T 1.23@ma) """

7.7

Nap. log. dec. = %IL;;X real part of ma

Instead of the latter part of (21), in which, however, the law of either series is
manifest, we may use its development according to descending powers of @, which is

3 24 252 3456 | 60768 1327104

Sma ™ @map t (gmay Gmay t Gmap Guay T 0 @2

mo—+ g+

The expression for the correction for the internal air will be got from the above by
changing the sign of ma and of the whole, or, in other words, by changing the signs
of the 2nd, 4th, 6th ... terms in the series in (21) or (22). It will be remembered
that ma is f(cos 45°+¢ sin 45°).

APPENDIX.
(Received November 15th, 1886.)

In the previous experiments the main loss of energy arising from the friction of the
air may be characterised as being due to the fact that the air is pushed. A small
portion, however, of the loss is occasioned by the rotation of the cylinders or spheres
about their own axes, and in this case the air may be said to be dragged. Professor
G. G. StokEs has, in the preceding note, deduced formulee by means of which this
last portion of the whole loss of energy can be calculated, and it seemed of interest
to determine whether the coefficient of viscosity of air would prove to be the same as
before, when the air was entirely dragged. This will occur when only one sphere or
one cylinder is used, whose axis is made to coincide with the axis of rotation.
Accordingly T followed out a suggestion of Professor STOKES in the manner detailed
in the following experiments.

Ezxperiment V1.

A paper cylinder was made by wrapping drawing-paper several times round a metal
cylinder, which had been turned true throughout its whole length, the different layers
being pasted together. When dry, the paper cylinder was removed from its metal
core, and its external diameter very carefully gauged by calipers reading to 1g%ggth of
an inch at six different places equidistant from each other. It was then gauged at
the same distances from the ends, but in directions at right angles to the first. The
following were the two sets of gauges :—

512
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Set 1. Set I1.
Diameter in inches. Diameter in inches.
6:026 6:073
6:083 6:010
6:106 6:051
6106 6:020
6:090 6030
6:010 6006
Mean 6:0701 60323

The circumference of the cylinder was next measured by a steel tape at five
different equidistant places :—

Circumference in centims,

4864
4866
4860
4856
4835

Mean 48562

Allowing for the thickness of the steel tape, the circumference is 48:485.

From the measurements made with the calipers and tape, the mean diameter of the
cylinder was 15'370 and 15433 centims. respectively, and the total mean 15°4015
centims.

It will be observed that the external diameter is nearly, but not quite, uniform
throughout ; this no doubt arises from the fact that the paper was not quite uniform
in thickness. Inside, as far as could be judged by inserting a straight edge, the bore
of the cylinder was perfectly uniform throughout.

The inside diameter was determined by the calipers at the top and bottom, at eight
different places in all. It was also determined by gauging the thickness of the walls
of the cylinder at the top and bottom by means of a wire gauge, and subtracting
twice the thickness from the external diameter as measured by the tape. The
internal diameter, measured in the two different ways mentioned above, was exactly
the same for both, namely, 14'872 centims. The mean of the internal and external
diameters is 151395 centims., and the mean radius 7:5698 centims.

The length of the paper cylinder was 60°80 centims., and the mass, allowing for
the air displaced, was 5436 grammes.

The wire was inserted into a hole bored in the centre of one end of a vertical brass
rod 2 millims. thick and 15 centims. long, and there soldered : the other extremity of
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the rod was soldered into the centre of a horizontal, hollow, brass tube, of length
17°85 centims., of diameter 1'25 centim., and of mass 29°20 grammes.

From the hollow brass bar the paper cylinder was suspended ; two holes, whose
centres were 2§ centims. from the top, being cut in the walls of the paper cylinder
for this purpose.

Great care was taken in arranging the cylinder, so that the axis of rotation might
coincide in direction as accurately as possible with the axis of the suspended system.
As the paper cylinder did not quite hang truly, it was made to do so by placing small
strips of tinfoil, as riders, on the top of the cylinder, and these strips were carefully
padded down by hand to the walls of the cylinder. The usual previous precautions
having been taken, the logarithmic decrement was determined from seven sets of
observations, each involving 100 vibrations, as follows :—

Number of

observation, Logarithmic decrement,

-0026307
0025856
*0025837
0025810
0025700
+0025849
0025550

O Ut CON -

These observations were consecutive, and the mean of them is ‘0025844,

The paper cylinder was now removed, and in its place was substituted a much
shorter cylinder, made partly of paper and partly of tinfoil, and having nearly the
same mass and mean radius. The dimensions of this cylinder were as carefully
measured as those of the longer cylinder, with both steel tape and calipers. The
mean of the inside and outside radius was 7-5182 centims., and its real length was
12:80 centims. Since the radius is, however, not quite the same as that of the
longer cylinder, we must assume its length to be

75132
7-5698

3
12'80><< > centims.,

or 12'52 centims. if we are to use it for the purpose mentioned below.

The same pieces of tinfoil as had been used with the long cylinder were used here,
and for the same purpose. The logarithmic decrement was then determined by six
sets of experiments, each involving three times the number of vibrations employed
with the longer cylinder.
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Number of T
observation, Logarithmie decrement.

0009162
0009015
0008743
-0008871
0009019
0008993

OO U WO D =

These, like the others, are consecutive observations, and the mean of them Iis

*0008967.
Applying the corrections, mentioned in the paper, for small differences in the vibra-

tion-periods, temperature, &c., when the two cylinders were used, we have for the
logarithmic decrement due to a cylinder (60°80—1232) centims. or 4828 centims. in

length the value
*0017029.

It follows, from Professor StTokEs’s formuls, that the logarithmic decrement
arising from the friction of the air against the inner and outer walls taken together
will be ’

Bﬁf logy ¢ (v/3f4 /2 X 0°375f~L— /3 X 04922754 &c.),

b
P a,
T

J being equal to

where « is the mean radius of the cylinder, = the vibration-period, u the coefficient of
viscosity, p the density of the air, M the mass of air which would be contained in a
cylinder of the same length, and having an internal radius equal to a, and I the
moment of inertia.

The values of I and 7 were 36966 centimetre-grammes and 3'6038 seconds respec-
tively. The corrected height of the barometer was 29:354 inches, and the tempera-
ture 129225 C. The value of p was calculated, as usual, on the supposition that the
air is half saturated with moisture.

The terms 0:375 /! and 0'4922 /"% are so small that we may calculate them by
using an approximate value of u, and the series converges so rapidly that it is quite

unnecessary to include any more terms in it.*
The value of p, determined from the data given above, was found to be

*00017580.

% Indeed, the third term might have been dispensed with in this case, but not in the next experiment.
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Expervment VII.

The copper wire used in the last experiment was about 4% feet in length and
0'1 centim. in diameter. This was now changed for one of the same length, but of
0'063 centim. diameter, so that the vibration-period became 8930 seconds. The
rest of the arrangements were the same as in Experiment VI. The corrected
logarithmic decrement was *0027040, and the value of p deduced as above was found
to be *00017902 at a temperature of 13°:100 C.

The mean of the two last experiments is ‘00017741 at a temperature of 12°:663 C.
This result agrees so well with the mean of those deduced from the previous experi-
ments that it is unnecessary to make any alteration in the formula already given for
finding the viscosity at any temperature.

I have entered more into the details of these last experiments, as I think the
present method can be more advantageously employed than any of the others.
Indeed, by spending sufficient time over the experiments, whereby the errors likely
to arise from the somewhat unstable nature of the internal friction of the metal may
be more perfectly eliminated, it seems likely that very considerable accuracy can be
attained by it.

[Nore added Dec. 8th, 1886.—A much greater number of observations were after-
wards made with the same cylinders and wires, and resulted as follows :—With the
wire used in Experiment VI. the value of u obtained was *00017708 at a temperature
of 12°225 C., and with the finer wire of Experiment VIIL the value was 00017783 at
a temperature of 13°:075 C. The mean of these values is 00017746 at 127650 C., as
compared with ‘00017711 at 11°79 C., the mean of the other five sets of experiments.
If we allow for the difference of temperature by using the previously given formula,
the agreement between these two means is perfect. ]

In conclusion, my warmest thanks are due to Professor StoxEs for his valuable
suggestions and advice throughout the investigation. To myself the experimental
verification of Professor STokEs's formulee has been a source of great pleasure.
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